
Windows Disassembler 1.7

User's Manual

Index

Introduction and Specifications.................................... page 2
Operation... page 2

Opening Files... page 2
The Display.. page 2
Creating Assembly Language Source Code Files... page 3
Assembly Tips.. page 4

Differences Between Versions 1.5, 1.6 and 1.7.............. page 5
The HiLevel Utility... page 5
Bugs... page 7
Warranty Disclaimer... page 8
Registration Form... page 9
Copyright.. page10

WDASM Windows Disassembler 1.7 Program Documentation 2
Introduction

Windows Disassembler disassembes Windows executables and dynamic link libraries. It allows the user to
browse at the source code of a program without having to write it to a file. Windows Disassembler generates procedure
directives, as well as all of the literal Windows API function call names.

Example source code is included to demonstrate how to use Windows Disassembler. To make these accessable,
these files have been linked to this document as text file objects. Double clicking on a particular icon will invoke Windows
Notepad with that particular file opened.

Specifications

Files
Works on Windows 3.x executables and dynamic link libraries only.
Instruction Set
Translates all instructions within the 486 instruction set. It assumes that all code is intended to run in 16-bit mode (which
is the mode that MS-DOS and Windows 3.1 run in).
Operating System and Hardware
Requires at least DOS 4.0, Windows 3.1, and a 286 or above IBM compatible computer. Installation of SMARTDRV
(which comes with Windows) is recommended.

Operation

Opening Files
The default file name extension is ".exe" for opening files if no extension is specified. Windows Disassembler

processes one file at a time. If a file is opened while another one is already open, the old file will be automatically closed.
When opened, the file's assembly language code appears on the screen, provided that the file has a DOS executable file
header, a new executable file header, and at least one segment. Otherwise, a dialog box will inform the user that the file
does not meet a particular specification.

The Display
Displaying code in the display window is presented as an alternative to generating a gigantic assembly language

source code file, since some programs are large, and the user may merely want to glance at a program's source code.
The code that initially appears in the window when a file is opened is the first segment within the file. Numbers

are assigned to segments according to their chronological order within the new executable file header. Windows
Disassembler displays one segment at a time within the window. The View | Segment command must be used to go to
another segment. To scroll the text in the window, use the Up Arrow, Down Arrow, Page Up, and Page Down keys, or the
scroll bar. To see the address offsets of each instruction, select View | Address Offsets from the main menu. To jump to a
specific address, select View | Go To from the main menu and enter the address in hexadecimal format.

The View | Far Call Names command toggles between displaying far function call names and the actual
relocation values in far CALL instructions (for example, 0000H:0FFFFH).

All labels have the form of either LxxxxH or DxxxxH, where xxxx is a 4-digit hexadecimal number equal to the
offset of the location being referenced. Labels with an 'L' prefix denote locations within the immediate code segment, and
labels with a 'D' prefix denote locations within a data segment. Labels within a code segment can either be procedure
labels, jump/loop labels, or data labels within the code segment. Assembler directives, while generated for source code
text files, are not shown in the display window.

Strings are detected and translated by Windows Disassembler whenever five or more visible characters occur
within a data segment.

The Edit! command allows the user to convert a desired range of bytes from byte declarations into instructions, or
vice versa, or to give labels to a specified range of bytes. This command is necessary for programs which have data
declarations in their code segments. Note that all modifications which the user has made to a segment will be lost when
exiting that segment. The user can save that segment using the Save Current Segment Only option as a text file first
before quitting to save the changes. However, when the user leaves the segment, there is no way to restore the byte
settings except by specifying them over again. Selecting the Create Separate Files For Each Segment option will result

WDASM Windows Disassembler 1.7 Program Documentation 3
in the the modifications/settings being erased (lost) before the file is created, hence the user must use the Save Current
Segment Only option.

Creating Assembly Language Source Code Files

After opening an executable, the user can create an assembly language source code file for it using the Save
Text As command. If the source code file name that the user specifies is the name of an already existing file, then that file
will be automatically overwritten with the new source code file. Three options are available for generating (a) file(s). The
first is to put all of the source code into one file. The name of this file will be the name the user specifies. The second
option is to put each segment of the source code into separate files. Each segment's file name will be of the form
yournameN.ext, where yourname.ext is the name the user specifies in the dialog box, and N is an integer corresponding
to the segment's number and which is appended to the base-name of the file (if necessary, this base name will be
truncated to perform the appending). For example, if the user specifies \work\myprog.asm as the file name, Windows
Disassembler will generate files named \work\myprog1.asm, \work\myprog2.asm, \work\myprog3.asm, etc.. The third
option is to generate a file for the current segment only (which is currently being displayed in the window). In this case
Windows Disassembler uses the file name exactly as specified.

All editing done will be lost if the user exits a segment which the user has just modified, or if the user tries writing
all of the segments to a file(s) at one time. However, if the user uses the Save Current Segment Only option, all
modifications will remain.

The new file will contain tabs. To display the file in the way in which it was intended to be displayed, the user
should set his or her editor's tab stop option to 8 spaces.

Windows Disassembler will create TITLE, .CODE segmentname, .DATA segmentname, .MODEL LARGE, .486,
and EXTRN winAPIfunc:FAR directives. PROC and ENDP directives are also created for all exported and far
procedures. In the case of non-exported functions, these procedure directives will all have the following form:

Functionn PROC FAR PUBLIC
(code)
RETF

Functionn ENDP

where n is the ordinal number (a decimal integer value) of the procedure in the entry table of the program's executable file
header. For exported functions, the name of the function is explicitly written as it is listed in the resident and non-resident
names tables in the program's header. For calls to functions in fixed memory segments, a comment is written beside the
call. For example,

CALL FAR PTR Proc0AD0HSeg5 ; (Fixed Memory Location)

For far calls to procedures within the program in a different segment, EXTERNDEF's are generated. Near procedures are
written in the following form:

ProcXXXXSegN PROC FAR PUBLIC
(code)
RET

ProcXXXXSegN ENDP

where XXXX is a four-digit hexidecimal value equal to the offset of the procedure in the segment and N is the decimal
number of the segment the procedure is in.

Windows Disassembler generates segment names for segment directives of the form .CODE SEGn, where n is
the segment number. This name is produced in order to distinguish between segments, and can be deleted or changed.
(If the segments are in separate files then the name isn't needed.) If there are exactly 2 segments in a program, Windows
Disassembler treats the program as having a small model, otherwise it assumes the program has a medium memory
model. If the program has a compact or large model, then the MODEL directive must be changed to reflect the actual
memory model. Windows Dissassembler 1.7 translates functions belonging to commdlg.dll and shell.dll. It also

WDASM Windows Disassembler 1.7 Program Documentation 4
generates information for unknown function calls in the form Module modulename Ordinal n. The user can look up the
names of these function names using an executable-file header utility on the given dynamic link library. (In other words,
one can use the relocation table names and offsets provided by an .exe file header utility to determine the
function/variable names in the source code.)

Finally, EXTRN's (or EXTERNDEF's) must be supplied for any far variables used by the program not already
supplied by Windows Disassembler (typically the far variable __winflags is used by Windows programs, for example).

As an example, the files hello.exe, hello.c, hello.def, hello2.inc, hello1.asm, and hello2.asm are included to
demonstrate disassembly using Windows Disassembler. hello.exe (a "hello world" program) is a compilation of hello.c.
hello.exh is an .exe file-header listing for hello.exe generated by EXEHDR.

hello1.asm and hello2.asm were generated using Windows Disassembler (using the Create Separate Files
option) and were edited as follows. The labels L0627H, L01ACH, and L0360H were made global labels via the :: (double
colon) since these are accessed outside of the procedure in which they exist. (In MASM 5.1 the ::'s wouldn't be
necessary.) An EXTRN __winflags directive was added, and the segment names SEG1 and SEG2 were deleted.

The include file was created by copying the file hello2.asm to hello2.inc. Then, using an editor with a regular
expression search function, each occurance of "^D" was replaced with EXTERNDEF D, each occurance of DB
00[A-F,0-9][A-F,0-9]H was replaced with :BYTE, and each occurance of DB "[A-Z,a-z,0-9,\\,\.,\,,\ ,*,\%,\~,\<,\>,
+,=,-,?,@,_]*" was replaced with :BYTE. The EXTERNDEFs serve as either PUBLIC or EXTRN specifiers, depending on
whether the corresponding argument of an EXTERNDEF is located in the same file or else in a different module (like
function prototypes in C).

One can rebuild hello.exe from hello2.asm with MASM 6.0 by typing:

ml /c hello1.asm
ml /c hello2.asm
link /ALIGN:4 hello1 hello2,hello2,, libw slibcew, hello.def;

which will generate hello2.exe.
Borland's Resource Workshop can be used for obtaining the resources from executables if necessary.

Assembly Tips

A problem that normally occurs is undefined label errors because of references to labels that are located in a
different procedure. The :: operator must be used to make such labels global. Another problem is a linking error in which
a given module references a global variable that doesn't exist. The problem is usually that the variable is a string which
follows another non-null terminating string in the data segment and the two strings are thus combined as one string. In
this case you must separate the strings. The error, "A2006 : undefined symbol" will occur when there are fixed
relocations in the program, which require EXTRNs and PUBLICs. However it is possible that procedure names could
conflict, requiring the procedure(s) to be renamed, especially in the case of procedures with the name, Procedure0000.

WDASM Windows Disassembler 1.7 Program Documentation 5

To make the code modifiable and more readable, it is necessary that the user changes all literal addresses in the
code (hexidecimal numbers) into their symbolic equivalents. For example, in the hello program,

MOV AX, 00B0H
MOV DX, DS
PUSH DX
PUSH AX

should be changed to

MOV AX, OFFSET D00B0H
MOV DX, DS
PUSH DX
PUSH AX

since this portion of code is passing the address of a string to a Windows function.
It is advisable that the user also makes a hardcopy of the windows.h file and that the user converts the

windows.h file into its MASM equivalent using the H2INC which comes with MASM 6.0. H2INC cannot translate certain
macros, such as RGB and MAKEINTRESOURCE, and hence these must be manually rewritten in MASM or else deleted.
This way, certain constants such as message values can be replaced by their symbolic equivalents. It is also suggested
that the user incorporate the prologue.inc file which comes with MASM 6.0 into the program in place of the existing
prologue and epilogue code to make things more legible. Finally, the user should replace all other variable names and
constants with more meaningful expressions. With the windows.inc file generated by H2INC, procedure calls usually can
be written in a more legible form using INVOKEs. If the NOCASEMAP option is used (for employing case sensitivity), the
prologue.inc file will need to modified slightly. In particular, the case of three or four of the words in the prologue.inc file
will have to be changed in order to agree. .IF, .WHILE, and .REPEAT constructs can also be used to make the code more
clear. The steps mentioned above can be accomplished faster with the help of the HiLevel utility.

Windows Disassembler 1.7 always outputs the .286 directive. If the source code generated by Windows
Disassembler contains any 386, 387, or 486 instructions, the user must change the .286 directive into a .386, .387, or .486
directive.

Differences Between Versions 1.5, 1.6 and 1.7

The display window from version 1.5 was altered so that as much text as possible could be fit into the window.
Version 1.6 can display text in two new fonts in addition to the previous ones.

Version 1.6 and 1.7 generate procedure names in the form of ProcXXXXSegN instead of ProcedureXXXX as in
version 1.5 in order to guarantee unique procedure names in programs with more than one code segment.

A bug was fixed from version 1.5 which made the program go into an infinite loop in a particular situation.
The include file used by the HiLevel utility has been updated and the program HiLevel has been slightly modified

to accomodate the changes. Prologue macros have been included in the hilevel.inc file.
Versions 1.0 through 1.6 disassembled only 286 instructions. Version 1.7 disassembles all 486 instructions.

The HiLevel Utility

IMPORTANT: HiLevel 2.1 was designed to work with 286 code. If there are certain 386/486 instructions in your
source code, they may cause syntax errors.

The HiLevel utility included with Windows Disassembler is a Windows 3.1 utility which attempts to build high-level
constructs out of the bare instructions generated by Windows Disassembler. The result is a smaller, more
understandable, and more readily modifiable source code file. It will accept as input basic MASM programs, provided they
do not have macros or certain other directives and high-level syntax keywords. It should accept all source code generated

WDASM Windows Disassembler 1.7 Program Documentation 6
by Windows Disassembler. HiLevel can construct nested .IF statements for each corresponding block of instructions
found in the given MASM source code file. Locals are given symbols of the form localn and parameters are given the
symbol parn, where n is the offset of the variable relative to the BP register.

HiLevel also constructs "pseudo-function calls" via a macro procedure named hCall. The hCall macro is defined
in the hilevel.inc which is included with Windows Disassembler. This macro does not perform any high-level operation,
but rather is just a more legible way of performing a series of pushes followed by a procedure call, regardless of whether
the arguments being pushed are actually being passed to the given function or not. HiLevel generates an OFFSET
DxxxxH instead of xxxxH when a number xxxxH follows DS in the parameter list of a hCall invokation, since this
combination is practically always a far address being passed as an argument.

The PROC directives produced by HiLevel are designed to work with either the hilevel.inc file or the
prologue.inc file that comes with MASM 6.0. As mentioned before, when enabling case-sensitivity (via OPTION
CASEMAP:NONE), some of the names in prologue.inc need to be modified in order to be made to have the same case,
plus there is a defective echo statement in it which should be fixed. If HiLevel detects prologue code in a procedure, it
then checks for matching epilogue code. If the prologue and epilogue do not logically agree, HiLevel generates a
comment above the procedure that explains what is missing in the epilogue code, and consequently the procedure is left
as is with no prologue/epilogue directives. If the epilogue and prologue logically agree, then the literal code is replaced by
the appropriate prologue/epilogue directives, including the FORCEFRAME and LOCAL directives, plus by specifying any
parameters.

If there is a syntax error in the source file, HiLevel will halt and give the line number on which the syntax error was
found. Otherwise it displays the message, "Compilation was successful! Hurrah! Hurrah!" It may take as much as a
minute to process a source code file, and as long as the user sees the disk drive light come on at regular intervals (say
every 5 seconds) there is no cause for alarm. Otherwise, the system is probably hung. It is possible that HiLevel could
hang up the system because of its limited local heap of 47,260 bytes (which is not a major problem in 386 enhanced
mode, since pressing Enter will terminate the application. Otherwise, in standard mode, hitting Ctrl-C instead of Ctrl-Alt-
Delete will sometimes terminate the application). What this means is that for programs containing extremely large
procedures HiLevel will use up the local heap and go into outer space (stop responding). But for typical files, it should
work.

As an example, the file hellohil.asm has been included, which is generated from hello1.asm. Hellohil.asm was
assembled and linked with the old hello2.obj and hello.def files as follows:

ml /c hellohil.asm
link /ALIGN:2 hellohil hello2,hellohil,, libw slibcew, hello.def;

 The only changes made were the renaming of Proc042ASeg1 to _aNchkstk (because the prologue/epilogue code
requires this), the addition of double colons (::) for the global labels, and carriage returns (lines) inserted after the labels
following the PROC directive in procedures Proc03EBSeg1 and Proc03FASeg1. The last change is because of a bug (or
undocumented behavior) in MASM that requires this. The bug is that whenever a macro call or loop-generating directive
(for example, hCalls, .IFs, .WHILEs, etc.) occurs on the line following a PROC directive in which prologue code is
expanded, and there is no LOCAL directive, MASM mistakedly will suppose that the macro will expand into the LOCAL
directive. When it discovers that the LOCAL isn't there, it just continues assembling, but consequently it somehow
distorts the expansion of the macro, so that either an error is generated or else garbage instructions are generated. The
following listing demonstrates what happens if we change the PUSH WORD PTR par4 and CALL FAR PTR LocalFree
instructions in procedure Proc08A2Seg1 (in hellohil.asm) into a hCall macro call:

WDASM Windows Disassembler 1.7 Program Documentation 7
089D Proc08A2Seg1 PROC NEAR C <NOLOADDS, NOINCBP, FORCEFRAME,
NOCHECKSTACK>, par4:WORD

hCall <FAR PTR LocalFree, WORD PTR par4>
= 0001 1 ??012D = 1
= FAR PTR LocalFree 2 ??012E TEXTEQU <FAR PTR
LocalFree>
= 0000 2 ??012D = 0
= 0000 3
= 0000 3 ??0130 = 0
= 0000 3 ??0131 = 0
= 0000 3 ??0132 = 0
= 0000 4 IFIDN <NOLOADDS>, <NOLOADDS>
= 0000 4 IFIDN <NOINCBP>, <NOINCBP>
= 0001 4 IFIDN <FORCEFRAME>, <FORCEFRAME>
= 0000 4 IFIDN <NOCHECKSTACK>, <NOCHECKSTACK>
= FFFFFFFF 3
089D 55 3
089E 8B EC 3 PUSH BP
08A0 FF 76 04 2 EXITM <00H>
08A3 9A ---- 0000 E 1 CALL ??012E

RET
= 0000 1 ??0134 = 0
= 0000 1 ??0135 = 0
= 0000 1 ??0136 = 0
= 0000 1 ??0137 = 0
= 0000 2 ??0135 = 0
= 0000 2 ??0137 = 0
= 0001 2 ??0134 = 1
= 0000 2 ??0136 = 0
= FFFFFFFF 1 ??0134 = ??0134 OR ??0137 OR ??0135 OR ??0136 OR (00H NE 0)
OR
08A8 8B E5 1 MOV SP,BP
08AA 5D 1 POP BP
08AB C3 1 RET
08AC Proc08A2Seg1 ENDP

Instead of PUSH BP and MOV BP, SP, it generates just PUSH BP in the prologue, and the push specified in the
hCall call doesn't get expanded. Consequently, in MASM 6.0, you may want to avoid calling a macro or using a loop-
generating directive as the first instruction in a procedure when:

a.) the automatic prologue code is forced (via FORCEFRAME) and
b.) there is no LOCAL directive.

Bugs

Known Bugs In Version 1.7

The screen will need refreshing after scrolling upwards, primarily within data segments, but sometimes in code
segments if the user edits the bytes. This bug will not affect file generation.

The scroll bar does not work properly when displaying segments of size 7FFFH or greater. In this case the user
must use the Page Up/Page Down and the up arrow/down arrow keys. This is because of Windows' scroll bar range limit
of 32,726 (7FFFH).

There is a bug associated with references to procedures in fixed segments (as opposed to moveable segments).

WDASM Windows Disassembler 1.7 Program Documentation 8
One such case is where the segment and offset of a function are being referenced. The user might, for example, see
something like the following:

PUSH SEG ABOUTDLG
PUSH 00A4H ; (Fixed Memory Location)
PUSH WORD PTR D0AC0H
CALL FAR PTR MakeProcInstance

This would be an error. Supposing ABOUTDLG is in segment 1, the second PUSH should actually be, "PUSH OFFSET
Proc00A4Seg1" The cause for this error has not been specifically determined.

License / Warranty Disclaimer
You are free to distribute Windows Disassembler 1.7 provided that no fee is charged for use, copying or

distribution, it is not modified in any way, and this documentation file (unmodified) accompanies all copies. This program
is provided as is without any warranty, expressed or implied, including but not limited to fitness for a particular purpose.
Windows Disassembler may not be used in any unlawful or illegal manner.

Windows Disassembler 1.7 is shareware. Continued use of Windows Disassembler 1.7 beyond a 30-day trial
period without registering is prohibited. The registration form is on the next page.

WDASM Windows Disassembler 1.7 Program Documentation 9

REGISTRATION

The single license fee for Windows Disassembler version 1.7 is only $20.00. Registering this software entitles you to
receive the latest information regarding upgrades and upgrade discounts. Please fill out this form (or a reasonable
facsimile thereof) and send it with your check or money order for $20.00 to:

Eric Grass (314) 928-7803
1612 Gettysburg Landing
St. Charles, MO 63303

Date________________________

Name__ Phone _________________________

Address___

City__ State ______ Zip ______________

Please indicate which type of disk you use:

Product: Windows Disassembler
Total Price: $20.00
Please make your check or money order payable to Eric Grass.

WDASM Windows Disassembler 1.7 Program Documentation 10

Copyright
Windows Disassembler and this documentation are copyrighted (c) 1992-1993 by Eric Grass.

Inquiries, comments, and suggestions regarding Windows Disassembler 1.7 are welcomed and can sent to Eric Grass via
the following:

Eric Grass
1612 Gettysburg Landing
St. Charles, MO 63303

Internet: s876795@umslvma.umsl.edu

